Towards a universal method for calculating hydration free energies: a 3D reference interaction site model with partial molar volume correction.
نویسندگان
چکیده
We report a simple universal method to systematically improve the accuracy of hydration free energies calculated using an integral equation theory of molecular liquids, the 3D reference interaction site model. A strong linear correlation is observed between the difference of the experimental and (uncorrected) calculated hydration free energies and the calculated partial molar volume for a data set of 185 neutral organic molecules from different chemical classes. By using the partial molar volume as a linear empirical correction to the calculated hydration free energy, we obtain predictions of hydration free energies in excellent agreement with experiment (R = 0.94, σ = 0.99 kcal mol (- 1) for a test set of 120 organic molecules).
منابع مشابه
Fast Computation of Solvation Free Energies with Molecular Density Functional Theory: Thermodynamic-Ensemble Partial Molar Volume Corrections.
Molecular density functional theory (MDFT) offers an efficient implicit-solvent method to estimate molecule solvation free-energies, whereas conserving a fully molecular representation of the solvent. Even within a second-order approximation for the free-energy functional, the so-called homogeneous reference fluid approximation, we show that the hydration free-energies computed for a data set o...
متن کاملHydration of ionic species studied by the reference interaction site model with a repulsive bridge correction
We have tested the reference interaction site model (RISM) for the case of the hypernetted chain (HNC) and the partially linearized hypernetted chain (PLHNC) closures improved by a repulsive bridge correction (RBC) for ionic hydrated species. We have analyzed the efficiency of the RISM/HNC+RBC and RISM/PLHNC+RBC techniques for decomposition of the electrostatic and the nonpolar hydration energi...
متن کاملPressure and temperature dependence of hydrophobic hydration: volumetric, compressibility, and thermodynamic signatures.
The combined effect of pressure and temperature on hydrophobic hydration of a nonpolar methanelike solute is investigated by extensive simulations in the TIP4P model of water. Using test-particle insertion techniques, free energies of hydration under a range of pressures from 1 to 3000 atm are computed at eight temperatures ranging from 278.15 to 368.15 K. Corresponding enthalpy, entropy, and h...
متن کاملHydration Free Energies of Molecular Ions from Theory and Simulation.
We present a theoretical/computational framework for accurate calculation of hydration free energies of ionized molecular species. The method is based on a molecular theory, 3D-RISM, combined with a recently developed pressure correction (PC+). The 3D-RISM/PC+ model can provide ∼3 kcal/mol hydration free energy accuracy for a large variety of ionic compounds, provided that the Galvani potential...
متن کاملA Cavity Corrected 3D-RISM Functional for Accurate Solvation Free Energies
We show that an Ng bridge function modified version of the three-dimensional reference interaction site model (3D-RISM-NgB) solvation free energy method can accurately predict the hydration free energy (HFE) of a set of 504 organic molecules. To achieve this, a single unique constant parameter was adjusted to the computed HFE of single atom Lennard-Jones solutes. It is shown that 3D-RISM is rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of physics. Condensed matter : an Institute of Physics journal
دوره 22 49 شماره
صفحات -
تاریخ انتشار 2010